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Effect of Dispersion of a solute in Peristaltic flow 
of a Jeffrey Fluid 

G. Ravi Kiran, G.Radhakrishnamacharya 
 

Abstract— In this paper, the dispersion of a solute in the peristaltic flow of a Jeffrey fluid in the presence of both homogeneous and 
heterogeneous chemical reactions has been discussed. The average effective dispersion co-efficient has been found using Taylor's limiting 
condition under long wavelength approximation. It is observed that the average dispersion co-efficient increases with amplitude ratio which 
implies that dispersion is more in the presence of peristalsis. The average dispersion co-efficient increases with Jeffrey parameter ( 1λ ) in 
the cases of both homogeneous and combined homogeneous and heterogeneous chemical reactions. Further, dispersion decreases with 
homogeneous reaction rate parameterα and heterogeneous reaction rate parameter β . 

Index Terms— Dispersion, Irreversible chemical reaction, Jeffrey fluid, Peristalsis.   
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1 INTRODUCTION                                                                     
ERISTALTIC motion is a form of fluid transport that oc-
curs when a progressive wave of area contraction or ex-
pansion propagates along the length of a distensible tube 

or channel containing the fluid. The study of peristaltic flow 
has received considerable attention during the past few years 
mainly because of its applications in several disciplines of en-
gineering and biology. Some applications of the peristaltic 
transport include urine transport from kidney to bladder, 
chyme movement in the intestines, the movement of sperma-
tozoa in male reproductive tract etc. Also mechanical devices 
such as dialysis machines, open heart bypass pump machines 
and infusion pumps use peristalsis. Hence, several authors 
have studied peristaltic transport of Newtonian fluids under 
different conditions (Fung and Yih [1], Shapiro et al. [2], 
Shehawey and Sebaei [3], Nadeem and Akbar [4], [5], Takagi 
and Balmforth [6]).  

 
Most of bio-fluids such as blood exhibit the behavior of 

non-Newtonian fluids. Hence, the study of peristaltic 
transport of non-Newtonian fluids may help to get better un-
derstanding of the working of biological systems. Radhakrish-
namacharya [7] studied long wavelength approximation to 
peristaltic motion of a power law fluid. Medhavi [8], Nagarani 
[9], Ravi Kumar et al. [10] and Narahari and Sreenadh [11] 
studied peristaltic transport of non-Newtonian fluids under 
different conditions. Another non-Newtonian fluid that re-
ceived considerable attention of researchers is Jeffrey fluid, 
which can be used to represent a physiological fluid. This 
model is a relatively simpler linear model which uses time 
derivatives instead of convective derivatives. It represents a 
rheology different from that of Newtonian fluid. Further, Jef-
frey fluid model is significant because Newtonian fluid model 
can be deduced from this as a special case by taking 1λ =0. 

Some researchers have studied peristaltic motion of a Jeffrey 
fluid under different conditions. Hayat et al. [12] analyzed 
three-dimensional flow of Jeffrey fluid. Vajravelu et al. [13] 
investigated the influence of heat transfer on peristaltic tran-
soport of Jeffrey fluid. Hayat and Ali [14], Kothandapani and 
Srinivas [15], Nadeem and Akram [16] and Pandey and Tripa-
thi [17] have considered the peristaltic motion of a Jeffrey flu-
id. 

 
Dispersion describes the spread of particles through ran-

dom motion from regions of higher concentration to regions of 
lower concentration. The fluid mechanical aspects of disper-
sion of a solute also received the attention of some investiga-
tors in the last few decades. The dispersion of a solute in a 
viscous liquid flowing in a circular pipe under laminar condi-
tions was studied by Taylor [18], [19], [20]. Aris [21] while ex-
tending Taylor's analysis found that the rate of growth of vari-
ance of the solute distribution is proportional to the sum of the 
molecular diffusion and Taylor diffusion coefficient. In all 
these investigations, it is assumed that the solute does not 
chemically react in the liquid in which it is dispersed. Howev-
er, in a wide variety of problems of chemical engineering, dif-
fusion of a solute takes place with simultaneous chemical reac-
tion in situations such as hydrolysis, gas absorption in an agi-
tated tank, esterification (Padma and Ramana Rao [22]). 
Hence, Gupta and Gupta [23], Ramana Rao and Padma [24], 
[25] and Padma and Ramana Rao [22] dealt with the effect of 
chemical reaction on the dispersion in Newtonian fluids. Dut-
ta et al. [26] and Shukla et al. [27] studied dispersion in non-
Newtonian fluids by considering only homogeneous first-
order chemical reaction in the bulk of the fluid. Chandra and 
Agarwal [28] considered dispersion in simple microfluid flows 
taking only homogeneous reaction into consideration. Philip 
and Chandra [29] also investigated the effects of heterogene-
ous and homogeneous reactions on the dispersion of a solute 
in simple microfluid. Recently, Alemayehu and Radhakrish-
namacharya [30], [31] studied the effect of dispersion on peri-
staltic flow of micropolar and couple stress fluids under dif-
ferent conditions.     
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Peristalsis and diffusion are very important aspects in biolog-
ical systems. The effect of dispersion in peristaltic motion of a 
Jeffrey fluid has not received any attention. It is realized that 
peristalsis may enhance dispersion of a solute in fluid flow. 
This, in turn, may help in better absorption of nutrients and 
drugs in physiological systems. Hence, the study of the interac-
tion of peristalsis with diffusion may lead to better understand-
ing of the flow situation in physiological systems. In the present 
study, the effect of peristalsis on the dispersion of a solute in a 
Jeffrey fluid with simultaneous chemical reaction is investigat-
ed. Using long wave length approximation and Taylor's ap-
proach, closed form solution has been obtained for the disper-
sion coefficient for both the cases of homogeneous first-order 
irreversible chemical reaction and combined first-order homo-
geneous and heterogeneous chemical reactions. The effects of 
various relevant parameters on the average effective dispersion 
coefficient are studied. 

2 MATHEMATICAL FORMULATION 
Consider the dispersion of a solute in peristaltic flow of a 

Jeffrey fluid in an infinite uniform channel of width 2d and 
with flexible walls on which are imposed traveling sinusoidal 
waves of long wavelength. Cartesian coordinate system (x, y) 
is chosen with x-axis aligned with the center line of the chan-
nel. The traveling waves are represented by (Fig. 1) 

 
 

 
 
 
 
 
 
 

 
 
 

 
Fig. 1 Geometry of the problem  

 
       (1) 

where a is the amplitude, c is the speed and λ is the 
wavelength of the peristaltic wave. 

The constitutive equations for an incompressible Jeffrey 
fluid [12], [13], [14], [15], [16], [17] are  

 
SIPT +−=       (2) 

 
       (3) 
 
where T , S are Cauchy stress tensor and extra stress tensor 
respectively, P is the pressure, I is the identity tensor,     is the 
ratio of relaxation to retardation times,  is the retardation 
time, µ is the dynamic viscosity, γ  is the shear rate and dots 
over the quantities indicate differentiation with respect to 
time.  

 The equations governing two-dimensional motion of an 
incompressible Jeffrey fluid are reduced to 
 
    
       (4) 
 
 
       (5) 
 
and       
  
       (6) 
 
where u,v are the velocity components in the x and y direc-
tions respectively, p is the pressure, ρ is the density and Sxx, 
Sxy, Syx, Syy are extra stress components.  
                                     

Under long wavelength approximation, the governing 
equations for the present problem reduces to, 

 
       (7) 

 
       (8) 
 
       (9) 
 
 We assume that the walls are inextensible so that only lat-
eral motion takes place and the horizontal displacement of the 
wall is zero. 
 Thus, the no-slip boundary condition for the velocity is 
given by,  

0=u  at hy ±=                    (10) 
Solving (7) and (8) under the boundary conditions (10), we get 
 
                    (11) 
 
Further, the mean velocity is defined as 
 

                   (12) 
 
Substituting (11) in (12), we get 
 

                   (13) 
 

If we now consider convection across a plane moving with 
the mean speed of the flow, then relative to this plane, the flu-
id velocity is given by 
                    (14) 
Substituting (11) and (13) in (14), we get 
 

                   (15) 
 

 

2.1 Diffusion with a Homogeneous First order Chemic-
al Reaction 
It is assumed that a solute diffuses and simultaneously 

undergoes a first order irreversible chemical reaction in peri-
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staltic transport of Jeffrey fluid in a channel under isothermal  
 

conditions. Using Taylor’s approximation, i.e.,             , the   
 
equation for the concentration C of the solute for the present 
problem is given by 
 
                   (16) 
 
where D is the molecular diffusion co-efficient and    is the first 
order reaction rate constant. 
 For typical values of physiologically relevant parameters 
of this problem, it is realized that              . Using this condition 
and making use of the following dimensionless quantities, 
     
          ,         ,         ,    ,                (17) 
 
equation (15) reduces to 
 
                   (18)  
 
and equation (16) becomes, 
 

                   (19) 
 
 Assuming that there is no absorption at the walls, the 
boundary conditions for the concentration C are 
 

for                   (20) 
 

where           is the amplitude ratio. 
 
 Assuming that        is independent ofη at any cross section 
 
and solving (19) under the boundary conditions (20), the solu-
tion for the concentration of the solute C is given as 
 
 
  
                   (21) 
 
where  
  
 The volumetric rate Q at which the solute is transported 
across a section of the channel of unit breadth is defined by, 
 
                    (22) 
 
 Substituting (18) and (21) in (22), we get the volumetric 
rate Q as 
 
                    (23) 
 
where 
 
 
       
                   (24) 

Comparing (23) with Fick’s first law of diffusion, we find 
that the solute is dispersed relative to a plane moving with the 
mean speed of the flow with an effective dispersion co-
efficient *D  given by 

 
                                (25) 

 
Let the average of F be F , and is defined by 
 
                    (26) 

 

2.2 Diffusion with Combined Homogeneous and Heter- 
ogeneous Chemical Reactions 
We now discuss the problem of diffusion with a first-

order irreversible chemical reaction taking place both in the 
bulk of medium (homogeneous) as well as at the walls (heter-
ogeneous) of the channel which are assumed to be catalytic to 
chemical reaction.  The simplified diffusion equation is same 
as (16). 
 
i.e.,                      (27) 
 
The differential material balance at the walls as in Philip and 
Chandra [29] gives the boundary conditions as 
 

         at                                                 (28) 
 
 
                       at                   (29) 

 
where fC gives the surface reaction rate parameter.  
 If we introduce the dimensionless variables (17), the dif-
fusion equation remains as (19) and the boundary conditions 
become 
 

  at                    (30) 
 

 
  at                   (31) 

 
where fd=β is the heterogeneous reaction rate parameter 
corresponding to catalytic reaction at the walls.  
 The solution of (19) under the boundary conditions (30) 
and (31) is,  
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where )cosh()sinh( HHL αβαα +=                 
 The volumetric rate Q at which the solute is transported 
across a section of the channel of unit breadth is defined by, 
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Substituting (18) and (32) in (33), we get 
 
                    (34) 
 
 
where 
 
 
 

 
 
 

 
             (35) 

Comparing (34) with Fick’s first law of diffusion, we find 
that the solute is dispersed relative to a plane moving with the 
mean speed of the flow with an effective dispersion co-
efficient *D  given by 

 
                  (36) 
 
Let the average of G be G , and is defined by 
 
                           (37) 
 

3 RESULTS AND DISCUSSIONS 
 The effects of various parameters on the average effective 
dispersion coefficient can be observed through the functions 
F  and G  given by equations (26) and (37) respectively. The 
expressions for F  and G have been obtained by numerical 
integration using MATHEMATICA software for different val-
ues of relevant parameters and presented graphically. The 
important parameters involved in the expressions are: the am-
plitude ratioε , the homogeneous reaction rate parameterα , 
the heterogeneous reaction rate parameter β and the Jeffrey 
parameter 1λ . 
 
3.1 Homogeneous Chemical Reaction 

Figs. 2 and 3 show the effect of amplitude ratio on effec-
tive dispersion co-efficient for different values of Jeffrey pa-
rameter, in the case of homogeneous chemical reaction. It can 
be noticed  that the average  effective dispersion co-efficient F   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 2 Effect of  1λ  on F (α =1) 
increases with amplitude ratioε . This may mean that peristal-
sis enhances dispersion. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Effect of 1λ  on F (α =2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4 Effect of 1λ on F ( ε =0.2) 
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Fig. 5 Effect of 1λ on F  ( ε =0.2) 
 
 The effect of Jeffrey parameter 1λ on the average disper-
sion co-efficient is shown in Figs. 2 - 6. It can be observed that 
the dispersion increases with Jeffrey parameter 1λ .   It is also 
observed that the average dispersion coefficient decreases 
with chemical reaction parameterα for all values of amplitude 
ratio and Jeffrey parameters (Figs. 4 - 6). This result agrees 
with that of Gupta and Gupta [23], Dutta et al. [26], Ramana 
Rao and Padma [24], [25], Padma and Ramana Rao [22]. This 
result is expected since increase inα leads to increasing num-
ber of moles of solute undergoing chemical reaction and this 
results in the decrease of dispersion. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Effect of 1λ on F )2.0( =ε  
 

3.2 Combined Homogeneous and Heterogeneous Che- 
mical Reactions 

 
Figs. 7 – 10 display the effects of various parameters on 

the average effective dispersion co-efficient G for the case of 
combined first order chemical reactions both in the bulk and at 
the walls. Fig. 7 shows that the average effective dispersion co-
efficient G represented by equation (37) increases with ampli-
tude ratioε . This implies that peristalsis enhances dispersion 
of a solute in fluid flow. This result is same as that obtained in 
the case of homogeneous reaction. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 7 Effect of 1λ on G (α =1 and β =5) 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 Effect of 1λ on G (α =1 and ε =0.2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9 Effect of 1λ on G (α =1 and ε =0.4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 10 Effect of 1λ on G ( β =5 and ε =0.2) 
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 It can be seen that average dispersion co-efficient G  in-
creases with Jeffrey parameter 1λ   (Figs. 7 - 10). This result 
agrees with that of Alemayehu and Radhakrishnamacharya 
[30], [31]. It is also observed that the average dispersion coeffi-
cient decreases with homogeneous chemical reaction rate pa-
rameterα  (Fig. 10) and heterogeneous chemical reaction rate 
parameter β (Figs. 8 and 9). 

4 CONCLUSION 
The dispersion of a solute in peristaltic motion of a Jeffrey 

fluid with both homogeneous and heterogeneous chemical 
reactions has been studied under long wavelength approxima-
tion and Taylor's limiting condition. It is observed that peri-
staltic motion enhances dispersion and dispersion increases 
with Jeffrey parameter 1λ in the cases of both homogeneous 
and combined homogeneous and heterogeneous chemical re-
actions.  Further, average dispersion co-efficient decreases 
with homogeneous reaction rate parameterα heterogeneous 
reaction rate parameter β . 
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